Math 55 Discussion problems 25 Apr

- 1. The complete *m*-partite graph $K_{n_1,n_2,...,n_m}$ has vertices partitioned into *m* subsets of $n_1, n_2, ..., n_m$ elements each, and vertices are adjacent if and only if they are in different subsets in the partition. Draw the following graphs.
 - (a) $K_{1,2,3}$ (b) $K_{2,2,2}$ (c) $K_{1,2,2,3}$
- 2. Show that in a simple graph with at least two vertices there must be two vertices that have the same degree.
- 3. Prove or disprove that there are always two vertices of the same degree in a finite multigraph having at least two vertices.
- 4. Show that if G is a bipartite simple graph with v vertices and e edges, then $e \leq \frac{v^2}{4}$.
- 5. Suppose that 2n tennis players compete in a round-robin tournament. Every player has exactly one match with every other player during 2n 1 consecutive days. Every match has a winner and a loser. Use Hall's theorem to show that it is possible to select a winning player each day without selecting the same player twice.
- 6. The converse of a directed graph G = (V, E), denoted by G^{conv} , is the directed graph (V, F), where the set F of edges of G^{conv} is obtained by reversing the direction of each edge in E. Show that the graph G is its own converse if and only if the relation associated with G is symmetric.